

LEARNING @ SCALE 2022 CORNELL TECH, NYC

Meta Transfer Learning for Early Success Prediction in MOOCs

VINITRA SWAMY, MIRKO MARRAS, TANJA KÄSER

EPFL

University of Cagliari

Vinitra Swamy

Mirko Marras

Tanja Käser

Deep Learning has been increasingly researched in digital learning environments

> (LMS) Autograding, **Plagiarism detection**

Features Student

(MOOCs) Dropout Prediction

(OELEs) Student Knowledge Tracing

Why are neural networks for digital learning environments not widely adopted?

- Hard to make prediction for first students - Zero-shot learning solutions are not common

Small dataset sizes

- Classrooms of 20, 30, 50, 100 students - Hard to predict on without overfitting

DEEP LEARNING EDUCATION

In many settings, it is impossible to train an ideal model from scratch for early student success prediction.

Ongoing or first-time courses

Train on past iterations^[1,2]

- Deep Knowledge tracing
- Dropout Prediction
- Performance Prediction

[1] Wang, Lisa, et al. "Deep knowledge tracing on programming exercises." *Proceedings of the fourth (2017) ACM conference on learning@ scale*. 2017.
[2] David John Lemay and Tenzin Doleck. Grade prediction of weekly assignments in MOOCs: mining video-viewing behavior. Education and Information Technologies, 25(2):1333–1342, 2020.
[3] Ding, Mucong, et al. "Transfer learning using representation learning in massive open online courses." *Proceedings of the 9th international conference on learning analytics & knowledge*. 2019.

Transfer across few courses^[3]

The objective of this paper is therefore to use **meta transfer learning** to develop **early success prediction** models that can be **applied across diverse domains**

Large Model Diverse Dataset

Dataset: 26 MOOCs, 145,000 enrollments, millions of interactions

Meta Learning + Transfer Learning = Meta Transfer Learning

Research Questions MOTIVATION

- 1) Can student behavior transfer across iterations of the same course and across different courses?
- 2) Is a meta learning model trained on a combination of behavior and course metadata information more transferable?
- 3) Can fine-tuning a combined model on past iterations of an unseen course lead to better transferable models?

Pipeline Methodology

Easy-to-Predict: Filter out easy-to-predict failing students, as there is no need for a complex model if a LogReg is sufficient!

Data Collection

METHODOLOGY

Processing

Africaines

Programming

Languages: English / French

Student Level: Prop / BSc / MSc

Students: 95 - 19k

--- only 1 iteration ---

Weeks: 5 - 15

Pass Ratio: 1% - 65%

Quizzes: 4 - 38

Pipeline Methodology

Pipeline Methodology

All features are derived from previous work. (Boroujeni et al., Marras et al., Chen Cui, Lalle Conati)

METHODOLOGY

Behavior Features

Features derived from student clickstream.

Meta Features

Features derived metadata about the course.

Pipeline Methodology

Evaluation metric: Balanced Accuracy (BAC)

Classification

METHODOLOGY

Behavior Only (BO)

Behavior + Time-wise Meta (BTM)

Classification

METHODOLOGY

Behavior + Static Meta (BSM)

RESULTS

Can student behavior transfer across iterations of the same course and across different courses?

Train on:

Same course
Different course
Previous iterations
20 courses

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Transfer on 6 courses

RESULTS

Can student behavior transfer across iterations of the same course and across different courses?

	60% Early Prediction Level						
	1-1 Same						
DSP	92.7						
Villes Africaines	82.9						
Structures	55.2						
ProgFun	50.8						
Ventures	54.9						
Geomatique	79.5						

1-1 Same: predict on same course as training

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

RESULTS

Can student behavior transfer across iterations of the same course and across different courses?

	60% Early Prediction Level 1-1 Diff ²
DSP	65.3
Villes Africaines	67.0
Structures	51.3
ProgFun	51.0
Ventures	60.2
Geomatique	57.6

1-1 Diff: predict on different course from training

RESULTS

Can student behavior transfer across iterations of the same course and across different courses?

	60% Early Prediction Level N-1 Same					
DSP	91.8					
Villes Africaines	80.7					
Structures	50.4					
ProgFun	62.3					
Ventures	_					
Geomatique	_					

N-1 Same: train on previous iterations

RESULTS

Can student behavior transfer across iterations of the same course and across different courses?

	60% Early Prediction Level	
		N-1 Diff
DSP		87.8
Villes Africaines		82.7
Structures		54.4
ProgFun		62.0
Ventures		71.8
Geomatique		65.5

N-1 Diff: train on 20 courses, predict on 6

RESULTS

Can student behavior transfer across iterations of the same course and across different courses?

	60% Early Prediction Level 1-1 Same ¹ 1-1 Diff ² N-1 Same N-1 Diff							
DSP	92.7	65.3	91.8	87.8				
Villes Africaines	82.9	67.0	80.7	82.7				
Structures	55.2	51.3	50.4	54.4				
ProgFun	50.8	51.0	62.3	62.0				
Ventures	54.9	60.2	-	71.8				
Geomatique	79.5	57.6	-	65.5				

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Yes! Courses with previous iterations, high # of students, and high passing rate benefit from models trained on previous iterations (N-1 Same).

Otherwise, training on different courses (N-1 Diff) is better.

RESULTS

Is a meta learning model trained on a combination of behavior and course metadata information more transferable?

Train on 20 courses (behavior + meta)

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Transfer on 6 courses

RESULTS

Is a meta learning model trained on a combination of behavior and course metadata information more transferable?

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

0.62

ProgFun

Venture

Geomatique

RESULTS

Is a meta learning model trained on a combination of behavior and course metadata information more transferable?

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

RESULTS

Is a meta learning model trained on a combination of behavior and course metadata information more transferable?

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

RESULTS

Is a meta learning model trained on a combination of behavior and course metadata information more transferable?

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

RESULTS

Is a meta learning model trained on a combination of behavior and **course metadata** information more transferable?

RQ2: Attention Layers RESULTS

Which meta features are important?

Title, Level and Long Description get a lot of attention. Behavior and meta features have similar levels of attention.

RQ3: Fine-Tuning RESULTS

Can fine-tuning a combined model on past iterations of an unseen course lead to better transferable models?

Train on **25** courses (behavior + meta)

Fine-tune + Transfer on 3 courses

Diverse in: # students, pass-ratio, # quizzes!

RQ3: Fine-tuning

RESULTS

0.63

Micro

RQ3: Fine-tuning

RESULTS

Can fine-tuning a combined model on past iterations of an unseen course lead to better transferable models?

RQ3: Fine-tuning

RESULTS

Can fine-tuning a combined model on past iterations of an unseen course lead to better transferable models?

When the past iterations are very similar (in student population and course structure) to the current iteration, FT helps. If not, it hurts.

1) Training on a large model is very helpful!

2) Combining behavior + meta features using attention leads to the best performance.

3) Level, Title, and Duration meta features are very important.

4) When previous iterations are available and similar to the ongoing course, fine-tuning helps better transfer.

Extensions

FUTURE WORK

- Extend dataset to other universities and world regions.
- Extend to different modalities (flipped classrooms and blended courses) to see if transferability is modality-agnostic.
- Use latent feature representations from autoencoders.

Main Takeaways

META TRANSFER LEARNING FOR EARLY SUCCESS PREDICTION IN MOOCS

Large models combining interaction data and meta information have comparable or better performance than models which have access to previous iterations of the course.

Main Takeaways

META TRANSFER LEARNING FOR EARLY SUCCESS PREDICTION IN MOOCS

Using our models, educators can warm-start predictions for their ongoing or small courses!

epfl-ml4ed/ meta-transfer-learning

Thank you!

META TRANSFER LEARNING FOR STUDENT SUCCESS PREDICTION IN MOOCS

Questions?

META TRANSFER LEARNING FOR STUDENT SUCCESS PREDICTION IN MOOCS

Vinitra Swamy epfl-ml4ed/meta-transfer-learning vinitra.swamy@epfl.ch

RQ2: Ablation Study RESULTS

Which meta features are important?

Level, Title, and Duration meta features are important for very early predictions.

RQ2: Attention Layers RESULTS

Are meta features important?

More variance in importance of behavior and meta features in later predictions.

Data Collection

METHODOLOGY

	(((p))) •••••		
	Digital Signal Processing	Villes Africaines	Structures
Lang.	English	En/Fr	French
Level	MSc	BSc/Prop	BSc
Students	15k	13k	350

Geomatique

--- only 1 iteration ---

French	English	French		
BSc	BSc	BSc		
19k	7k	450		

9k	7k	450

Data Collection

METHODOLOGY

Analyse Numerique

Students	4k	1.5k
Quizzes	18	36
Weeks	10	9

BSc

2.5k 10 5

Dataset

METHODOLOGY

Title	Identifier	Itera t Trn	t ions ¹ Trs	Topic ²	Level ³⁸	Language ⁴	No. Weeks ⁵	No. Stu Trn	dents³ Trs	Passin Trn	g Rate⁶ [%] Trs	No. Quizzes ⁷
Comprendre les Microcontrôleurs	Micro	4	0	Eng	BSc	French	10	3,974	-	26.9	-	18
Analyse Numérique	AnNum	3	0	Math	BSc	French	9	1,471	-	51.5	-	36
Household Water Treatment and Storage	HWTS	2	0	NS	BSc	French	5	2,438	-	47.2	-	10
Programmation Orientée Objet	OOP	1	0	CS	Prop	French	10	797	-	38.1	-	10
Programmation en C++	InitProgC++	1	0	CS	Prop	English	8	728	-	63.3	-	13
Digital Signal Processing	DSP	4	1	CS	MSc	English	10	11,483	4,012	22.6	23.1	38
Villes Africaines	Villes Africaines	2	1	SS	BSc/Prop ⁹	En/Fr ⁹	12	7,888	5,643	6.3	9.9	18
L'Art des Structures I	Structures	2	1	Arch	BSc	French	10	278	95	57.7	66.3	6
Functional Programming	ProgFun	1	1	CS	BSc	French	7	11,151	7,880	50.72	81.33	3
Launching New Ventures	Venture	0	1	Bus	BSc	English	7	-	6,673	-	1.4	13
Éléments de Géomatique	Geomatique	0	1	Math	BSc	French	11	-	452	-	45.1	27

¹ Set abbrev. *Trn*: training; *Trs*: transfer.

² Topic abbrev. Eng: Engineering; Math: Mathematics; NS: Natural Science; CS: Computer Science; SS: Social Science; Arch: Architecture; Bus: Economics and Business.

³ The values are computed after removing early-dropout students.⁴Level is chosen by majority label in *Trs* or *Trn*. ⁵Language is chosen by majority label in *Trs* or *Trn*.

⁶ Passing Rate is averaged over the courses in Trs or Trn weighted by number of students. ⁷No. Quizzes is averaged over the courses in Trs or Trn.

⁸ Level abbrev. Prop: Propedeutic / Other; BSc: Bachelor; MSc: Master. ⁹ For Villes Africaines, the / operator represents characteristics of courses in Trn / Trs.

Data Collection

METHODOLOGY

High Pass Ratio

Functional Programming

Structures

Analyse Numerique

Geomatique

Low Pass Ratio

Villes Africaines

Venture

Digital Signal Processing

RESULTS

Is a meta learning model trained on a combination of behavior and course metadata information more transferable?

On average, meta models beat prev. iterations models.

0.69

 \blacksquare BTM (N-1 Diff) \blacksquare All Students BTM (N-1 Diff)