

EDUCATIONAL DATA MINING 2022

Evaluating the Explainers: Black Box Explainable ML for Student Success Prediction in MOOCs

VINITRA SWAMY, BAHAR RADMEHR, NATASA KRCO, MIRKO MARRAS, TANJA KÄSER

Deep Learning has been increasingly researched in digital learning environments

> (LMS) Autograding **Plagiarism detection**

Imran et al. ICCAI 2019; Xing and Du, Journal of Edu Computing Research 2019; Piech et al. NeurIPS 2015.

(MOOCs) Dropout Prediction

(OELEs) Student Knowledge Tracing

Features

Student

Cost of using neural networks

DEEP LEARNING IN EDUCATION

Identifying "why" is important for effective, personalized interventions

Solution: Explainable Machine Learning

Problem: Deep Learning trades transparency for accuracy

Previous Work

MOTIVATION

Previous work: In (minimal) related literature, only one explainability method is picked per ML for Edu paper

SHAP for student dropout^[1]

Baranyi et al. CITE 2020; Scheers and Laet, ECTEL 2021; Pei and Xing, Journal of Edu Computing Research 2021

LIME for student advising^[2,3]

The objective of this paper is therefore to evaluate strengths and weaknesses of explainable Al methods across 5 models

5 diverse courses 5 different methods

Dataset: 20,000 MOOC enrollments, hundreds of thousands of interactions

courserd

Research Questions

MOTIVATION

- 1) How similar are the explanations of different explainability methods for a specific course?
- 2) How do explanations (quantitatively) compare across courses?
- 3) Do explanations align with prerequisite relations in a course curriculum?

Data Preprocessing —						F	eature	Extr	actio	on ——	\sim	-
							Eve	nt Logs			\mathbf{T}	
		±− ×÷		\$			action	time	course			
							video.pause	13:15:35	DSP 1			
DSP	DSP 2	Geo	VA N	licro			video.play	13:16:12	DSP 1]		
	Event Logs							{stu	dents x fe	atures x weeks}		
	action	time	course				-					
	video.pause	13:15:35	DSP 1			Regularity	Engageme	int C	onfrol	Participation		100
	video.play	13:16:12	DSP 1			3 features	13 features	s 22	features	4 features	Л	I

Digital Signal Processing 1 Digital Signal Processing 2

Villes Africaines

Languages: English / French

Student Level: BSc / MSc

Students: 452 - 5.6k

Geomatique

Microcontrôleurs

- # Weeks: 10 15
- Pass Ratio: 5% 45%
- # Quizzes: 17 27

Easy-to-Predict: Filter out easy-to-predict failing students, as there is no need for a complex model if a LogReg is sufficient!

- De	ata Pre	proc	essir	1g —		F	eature	Extr	actio	on —		
				<u>^</u>	7(Eve	nt Logs			1	(
		*÷		\$			action	time	course			
							video.pause	13:15:35	DSP 1			
DSP 1	DSP 2	Geo	VA M	licro			video.play	13:16:12	DSP 1			
	Eve	nt Logs	5			H _{Behavior}		{stu	dents x fe	atures x weeks}		7
	action	time	course				-					is.
	video.pause	13:15:35	DSP 1			Regularity	Engageme	ent C	onfrol	Participation	4	- Ho do
	video.play	13:16:12	DSP 1			3 features	13 features	s 22	features	4 features		(=

All features are derived from previous work. (Boroujeni et al., Marras et al., Chen Cui, Lalle Conati)

	ata Pre	proc	essir	1g —		F	eature	Extr	actio	on ——		-
(-				_	7(Eve	nt Logs			7(
		*- ×÷	<u></u> ≜ ≜	\$\$B			action	time	course			
	_						video.pause	13:15:35	DSP 1			
DSP 1	DSP 2	Geo	VAN	licro			video.play	13:16:12	DSP 1			
	Eve	nt Logs	5			H _{Behavior}		{stu	dents x fe	atures x weeks}		
	action	time	course				-					-
	video.pause	13:15:35	DSP 1			Regularity	Engageme	nt C	ontrol	Participation		-
	video.play	13:16:12	DSP 1		Л	3 features	13 features	s 22	features	4 features		I

Student Performance Prediction

	ata Pre	proc	essir	1g —		F	eature	Extr	actio	on —	\sim
				_	7(Eve	nt Logs	;		\mathbf{T}
		*÷	<u>+</u>	K			action	time	course		
							video.pause	13:15:35	DSP 1]	
DSP 1	DSP 2	Geo	VA N	licro			video.play	13:16:12	DSP 1]	
	Eve	nt Logs	5			H _{Behavior}		{stu	dents x fe	eatures x weeks}	
	action	time	course				-				
	video.pause	13:15:35	DSP 1			Regularity	Engageme	ent C	onfrol	Participation	
	video.play	13:16:12	DSP 1		Л	3 features	13 features	s 22	features	4 features) (±

Explanation: How important is this feature to the model's prediction?

Ribeiro et al., KDD 2016.

SHAP

SHapley Additive exPlanations

SHAP explains X_{student} by quantifying the contribution of each feature to the prediction.

Lundberg and Lee, NeurIPS 2017.

 F_3 **F**₂

cardinality

23

18

SHAP

SHapley Additive exPlanations

Train a model on each feature coalition.

2

Weighted sum of "marginal contributions" for each feature (i.e. F_3).

Lundberg and Lee, NeurIPS 2017.

KernelSHAP

Optimizations using the SHAP kernel function for efficient data point construction

PermutationSHAP

All feature combinations in forward and reverse directions (antithetic sampling)

CEM Contrastive Explanation Method $\{ F_{1}, F_{2}, F_{3}, F_{4}, \dots F_{42} \}$

Pertinent Positives (PP)

X' with the minimal subset of features that should be present to maintain the prediction.

Feature importance: |X'_{student_k} -

Klaise et al., NeurIPS 2018.

$$F_{43}, F_{44}, F_{45}$$

Pertinent Negatives (PN)

X' with a subset of features absent while maintaining the prediction.

Diverse Counterfactual Explanations for ML

Generate a point with the smallest possible change to the initial instance that results in a different prediction.

Optimize DiCE loss

Mothilal et al., FAT* 2020.

Determinal Point Process (DPP) Diversity Metric

RQI: I Course

$\mathsf{R}\,\mathsf{E}\,\mathsf{S}\,\mathsf{U}\,\mathsf{L}\,\mathsf{T}\,\mathsf{S}$

How similar are the explanations of different explainability methods for a specific course (DSP 1)?

LIME is very sparse. CEM is significantly different.

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

RO2: 5 Courses

RESULTS

How do explanations (quantitatively) compare across courses?

Jensen-Shannon Distance

Big differences across explainability methods.

RQ2: 5 Courses RESULTS

How do explanations (quantitatively) compare across courses?

Spearman's Rank Order Correlation

Again, big differences across explainability methods.

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

RQ2: 5 Courses

RESULTS

How do explanations (quantitatively) compare across courses?

PCA Analysis

Feature importance clusters by explainability method, not by course

RQ3: Validation

RESULTS

Do explanations align with prerequisite relations in a course curriculum (DSP 1)?

Train a model to predict Week 5 quiz performance.

Examine if Week 4 features are found important.

DSP 1: SKILL MAP

RQ3: Validation

RESULTS

Do explanations align with prerequisite relations in a course curriculum (DSP 1)?

Partially! However, each method identifies different important features.

Explainability methods are imperfect and biased.

We urge data scientists to:

- Carefully select an appropriate explainability method based on a downstream task
- Keep potential biases of the explainer in mind while analyzing interpretability results

Extensions

FUTURE WORK

- Extend to different tasks (i.e. dropout) and modalities (i.e. flipped, ITS)
- Explore black-box model architectures to see if explainability method effectiveness differs across predictors
- Which explanations lead to the most effective interventions for improved learning outcomes?

Main Takeaways

EVALUATING THE EXPLAINERS: BLACK BOX EXPLAINABLE ML FOR SUCCESS PREDICTION

> Explainability methods, systematically, do not agree on which features are important for predictions

Main Takeaways

EVALUATING THE EXPLAINERS: BLACK BOX EXPLAINABLE ML FOR SUCCESS PREDICTION

Using our insights, educators can be aware of the bias of their chosen explainability technique

epfl-ml4ed/ evaluating-explainers

Thank you!

EVALUATING THE EXPLAINERS: BLACK BOX EXPLAINABLE ML FOR SUCCESS PREDICTION

Questions?

EVALUATING THE EXPLAINERS: BLACK BOX EXPLAINABLE ML FOR SUCCESS PREDICTION

Vinitra Swamy epfl-ml4ed/evaluating-explainers vinitra.swamy@epfl.ch

RQ3: Validation

RESULTS

Do explanations align with prerequisite relations in a course curriculum (DSP 1)?

Train a model to predict **Week 9** performance.

Examine which weeks' features are found important.

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

DSP 1: SKILL MAP

RQ3: Validation

RESULTS

Do explanations align with prerequisite relations in a course curriculum (DSP 1)?

Partially! However, each method identifies different important features.

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$