

AAAI 2023 WASHINGTON DC

EPFL

MOHAMAD ASADI, VINITRA SWAMY, JIBRIL FREJ, JULIEN VIGNOUD, MIRKO MARRAS, TANJA KÄSER

RIPPLE: Concept-Based Interpretation for Raw Time Series Models in Education

Deep Learning has been increasingly researched in digital learning environments

> (LMS) Autograding, Plagiarism detection

Imran et al. ICCAI 2019; Xing and Du, Journal of Edu Computing Research 2019; Piech et al. NeurIPS 2015.

Student

Features

(MOOCs) Dropout Prediction

(OELEs) Student Knowledge Tracing

Why are neural networks for digital learning environments not widely adopted?

The humancentric cost of neural networks

DEEP LEARNING IN EDUCATION

Problem: extracting handcrafted features is hard

Identifying "why" is important for effective, personalized interventions

Problem: deep learning trades transparency for accuracy

The objective of this work is therefore to develop models for early success prediction that

(1) beat SoTA baselines with raw time series clickstreams
(2) provide interpretable insights for personalized intervention

Dataset: 23 MOOCs, >100k enrollments, millions of interactions 6 learner-centric behavioral dimensions (Regularity, Effort, Consistency, Proactivity, Control, Assessment)

RIPPLE

METHODOLOGY

Data Collection

METHODOLOGY

(((tp))) •••••		
	N / 11	

Digital Signal Processing

Villes Africaines

Structures

Languages: English / French	# Weeks: 5 - 11

Student Level: Prop / BSc / MSc

Students: 452 - 19k

Pass Ratio: 3% - 82%

Quizzes: 3 - 38

Household Water Treatment Venture

Geomatique

Raw Time Series

action	time	course
video.pause	13:15:35	DSP 1
video.play	13:16:12	DSP 1

RIPPLE

METHODOLOGY

Time Series Classification

METHODOLOGY

task: early prediction of student success (pass/fail)

challenge: raw time series

Zhang et al. ICLR 2021

RAINDROP

Graph NN with message passing

RIPPLE

METHODOLOGY

RIPPLE: Raindrop InterPretability PipeLine for Education

\bigcirc \bigcirc \bigcirc

METHODOLOGY

Can we obtain interpretability on raw multivariate time series? **Concept Activation Vectors**

concept: high effort

random students

Advantages: global and local scale, user-specified example-based concepts, directly using model activations (accuracy)

Kim et al. ICML 2018

Dimensions Measures Total time online Effort Total video clicks Mean session durat Relative time online Consistency Relative video clic Periodicity of week Periodicity of week Regularity Periodicity of day Content anticipation Proactivity Delay in lecture vie Fract. time spent (v Control Pause action freque Average change rat Competency streng Assessment Student shape

Table 1: Learning dimensions from Mejia-Domenzain et al. (2022) used as concepts for interpretability in our study.

$\bigcirc \bigcirc \bigcirc$

	Patterns
	Higher intensity Lower intensity
tion ie ks	Uniform First half Second half
k day k hour hour	Higher peaks Lower peaks
on ew	Anticipated Delayed
video) ency te	Higher intensity Lower intensity
gth	Higher intensity Lower intensity

RQ1: Performance

RESULTS

Can we use raw time series as input and achieve comparable performance to hand-crafted features?

Evaluation metric: Balanced Accuracy (BAC)

RQ1: Performance

$\mathsf{R}\,\mathsf{E}\,\mathsf{S}\,\mathsf{U}\,\mathsf{L}\,\mathsf{T}\,\mathsf{S}$

	Early 40%							Early 60%						
	Raindrop	SeF	Т	T	7	BiLS	TM	Raindrop	Sel	T	TI	7	BiLST	ГМ
	BAC	BAC	R	BAC	R	BAC	R	BAC	BAC	R	BAC	R	BAC	R
CPP*	0.57	0.46	2/2	0.54	2/2	0.56	2/2	0.55	0.53	1/2	0.52	2/2	0.55	2/2
DSP*	0.81	0.72	5/5	0.59	5/5	0.80	4/5	0.91	0.82	5/5	0.62	5/5	0.91	4/5
ProgFun*	0.76	0.63	2/2	0.53	2/2	0.63	2/2	0.75	0.69	2/2	0.56	2/2	0.67	2/2
AnNum	0.66	0.51	3/3	0.51	3/3	0.62	3/3	0.55	0.57	3/3	0.51	3/3	0.69	1/3
Geomatique*	0.50	0.45	1/1	0.56	0/1	0.47	1/1	0.77	0.55	1/1	0.45	1/1	0.76	1/1
HWTS	0.61	0.55	2/2	0.55	1/2	0.71	1/2	0.62	0.62	1/2	0.56	2/2	0.73	0/2
Micro	0.74	0.70	2/4	0.58	4/4	0.81	1/4	0.78	0.76	2/4	0.63	2/4	0.78	2/4
Ventures*	0.77	0.64	1/1	0.64	1/1	0.50	1/1	0.88	0.73	1/1	0.56	1/1	0.60	1/1
VA*	0.88	0.75	3/3	0.63	3/3	0.80	3/3	0.90	0.72	3/3	0.68	3/3	0.83	3/3

The best model for each course type and early prediction level is marked in **bold**. Course types where Raindrop had comparable or better performance to BiLSTM on both early prediction levels are marked in (*).

RAINDROP \geq hand-crafted features: 18 out of 23 courses RAINDROP \geq SoTA time-series (SeFT, TF): 21 out of 23 courses

$\bigcirc \bigcirc \bigcirc$

RQ2: Interpretation RESULTS

TCAV plots: random vector vs. learner-centric cluster vectors

Pass

Fail

High assesment is important for predicting failing students

RQ2: Interpretation RESULTS

Comparing students with differing profiles

rand is low, so *consistency* is important

For student B, *first half consistency* is important

RQ2: Interpretation RESULTS

Confusion Matrix Analysis: when does the model make mistakes?

Passing students: model uses *high effort* as a proxy for *pass*, but sometimes gets it wrong

next steps?

- automated _ concepts (d-tcav)
- generalization -

Main Takeaway

RIPPLE: CONCEPT-BASED INTERPRETATION FOR RAW TIME SERIES MODELS IN EDUCATION

Transparency does not have to come at the cost of accuracy or ease-of-use

Thank you!

Baselines

Hand-crafted features

(Swamy et al.)

Inputs

All features are derived from previous work.

Swamy et al. EDM / L@S 2022, Vaswani et al. NeurIPS 2017, Horn et al. ICLR 2020

$(t_3, .)$	$z_3, m_1),$
$(t_5, .)$	$z_5, m_1), \ldots$
(t_1, t_2)	$z_1, m_2),$
(t_4, t_4)	$(z_4, m_2), \ldots$
$(t_2, .)$	$z_2, m_3), \ldots$
(t_{11})	(z_{11}, m_3) ,

Outputs (shifted right)

> SeFT (Set Functions for Time Series)