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ABSTRACT
The increasing impact of machine learning and algorithmic
decision making on education has brought about growing
opportunities and concerns. Evidence has shown that these
technologies can perpetuate and even magnify existing ed-
ucational and social inequities. Research on fair machine
learning has aimed to develop algorithms that can detect
and, in some cases correct, bias, but this effort within the
educational data mining community is still limited.

FATED 2022 hopes to spur discussion around algorithmic
fairness and bias detection as specifically applied in an ed-
ucational context. Submissions and panels will be invited
to discuss: (a) collection and preparation of benchmark
datasets for bias detection and correction tasks, (b) evalua-
tion protocol definition and metric formulation appropriate
for bias and fairness in educational tasks, and (c) counter-
measure design and development for biased and unfair cir-
cumstances. These specific topics will be complemented by a
more general discussion of the education-specific challenges
for fair machine learning in education, bringing together per-
spectives from both industry and academia. This workshop
builds on the FATED workshop held at EDM 2020, and we
expect the workshop to make connections among already in-
terested researchers and provide a foundation for those who
want to engage in this area.

Part of the vision of creating adaptive educational technolo-
gies and building machine learning systems for education
is reducing inequality (e.g., [2]), and data-driven practices
are often viewed as a way to make education more equi-
table (e.g., [1]). While some interventions have been found
to decrease achievement gaps (e.g., [4]), there is increasing
concern that these systems may instead increase achieve-

ment gaps and perpetuate existing inequities [10, 12]. For
example, such systems might make targeted support more
available only to students with greater access to technology,
or be associated with lower learning gains in more disadvan-
taged schools (as seen in [11]).

In this workshop, we hope to bring an education-specific
lens on broader questions related to fair ML by spurring
discussion around:

• Data Set Collection and Preparation. By spurring dis-
cussion about what educational datasets are particularly
ripe for use as benchmarks for detecting and/or correcting
bias and what characteristics of an educational dataset
make it most useful for measuring or detecting algorith-
mic bias, this workshop aims to increase awareness about
what datasets are available and encourage future research
to include results on benchmark datasets.

• Evaluation Protocol and Metric Formulation. This work-
shop encourages discussion about what evaluation proto-
cols and metrics are most suitable for empirical research
on fairness and bias across common types of educational
machine learning and EDM tasks.

• Detection and Countermeasure Design. FATED 2022 pro-
vides a forum for discussion about what features of the
questions that we address in educational machine learning
and the datasets that we use pose particular challenges for
detecting and/or addressing algorithmic bias. Further,
the workshop will provide an opportunity for researchers
to share their work on algorithmic bias detection and cor-
rection specifically in education-related context.

Around these themes, FATED 2022 will showcase papers
that focus on datasets, evaluation protocol, research, repro-
ducibility, and recently published work (encore papers). By
stimulating these discussions, the organizers hope to build
community among researchers in this area, including inter-
ested EDM researchers who are not yet involved in these top-
ics and fair ML researchers who may wish to engage with the
field of education. Surrounding literature from the workshop
organizers focuses on educational technology [3, 20, 6, 13,
15], student behavioral patterns [7, 8], algorithmic fairness
[19, 18, 5], explainability [17], and responsible analytics for
social good [14, 9, 16].
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